首页> 外文OA文献 >Bayesian Joint Modelling for Object Localisation in Weakly Labelled Images
【2h】

Bayesian Joint Modelling for Object Localisation in Weakly Labelled Images

机译:弱标记对象局部化的贝叶斯联合建模   图片

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We address the problem of localisation of objects as bounding boxes in imagesand videos with weak labels. This weakly supervised object localisation problemhas been tackled in the past using discriminative models where each objectclass is localised independently from other classes. In this paper, a novelframework based on Bayesian joint topic modelling is proposed, which differssignificantly from the existing ones in that: (1) All foreground object classesare modelled jointly in a single generative model that encodes multiple objectco-existence so that "explaining away" inference can resolve ambiguity and leadto better learning and localisation. (2) Image backgrounds are shared acrossclasses to better learn varying surroundings and "push out" objects ofinterest. (3) Our model can be learned with a mixture of weakly labelled andunlabelled data, allowing the large volume of unlabelled images on the Internetto be exploited for learning. Moreover, the Bayesian formulation enables theexploitation of various types of prior knowledge to compensate for the limitedsupervision offered by weakly labelled data, as well as Bayesian domainadaptation for transfer learning. Extensive experiments on the PASCAL VOC,ImageNet and YouTube-Object videos datasets demonstrate the effectiveness ofour Bayesian joint model for weakly supervised object localisation.
机译:我们解决了将对象定位为带有弱标签的图像和视频中的边界框的问题。过去已经使用区分模型解决了这个弱监督的对象定位问题,在该模型中,每个对象类都独立于其他类进行本地化。本文提出了一种基于贝叶斯联合主题建模的新颖框架,该框架与现有框架的显着不同之处在于:(1)所有前景对象类都在单个生成模型中共同建模,该生成模型对多个对象共存进行编码,从而“解释”推理可以解决歧义并导致更好的学习和本地化。 (2)跨班级共享图像背景,以更好地学习变化的环境和“推出”感兴趣的对象。 (3)我们可以通过混合使用标记不明确的数据和未标记的数据来学习我们的模型,从而可以利用互联网上的大量未标记图像进行学习。此外,贝叶斯公式使得能够利用各种类型的先验知识来补偿弱标记数据提供的有限监督,以及用于转移学习的贝叶斯域自适应。在PASCAL VOC,ImageNet和YouTube-Object视频数据集上进行的大量实验证明了我们的贝叶斯联合模型对于弱监督对象定位的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号